Excitation energy dependent Raman spectrum of MoSe2
نویسندگان
چکیده
Raman investigation of MoSe2 was carried out with eight different excitation energies. Seven peaks, including E1g, A1g, E2g(1), and A2u(2) peaks are observed in the range of 100-400 cm(-1). The phonon modes are assigned by comparing the peak positions with theoretical calculations. The intensities of the peaks are enhanced at different excitation energies through resonance with different optical transitions. The A1g mode is enhanced at 1.58 and 3.82 eV, which are near the A exciton energy and the band-to-band transition between higher energy bands, respectively. The E2g(1) mode is strongly enhanced with respect to the A1g mode for the 2.71- and 2.81-eV excitations, which are close to the C exciton energy. The different enhancements of the A1g and E2g(1) modes are explained in terms of the symmetries of the exciton states and the exciton-phonon coupling. Other smaller peaks including E1g and A2u(2) are forbidden but appear due to the resonance effect near optical transition energies.
منابع مشابه
Excitation energy-dependent nature of Raman scattering spectrum in GaInNAs/GaAs quantum well structures
The excitation energy-dependent nature of Raman scattering spectrum, vibration, electronic or both, has been studied using different excitation sources on as-grown and annealed n- and p-type modulation-doped Ga1 - xInxNyAs1 - y/GaAs quantum well structures. The samples were grown by molecular beam technique with different N concentrations (y = 0%, 0.9%, 1.2%, 1.7%) at the same In concentration...
متن کاملLarge area chemical vapor deposition of monolayer transition metal dichalcogenides and their temperature dependent Raman spectroscopy studies.
We investigate the growth mechanism and temperature dependent Raman spectroscopy of chemical vapor deposited large area monolayer of MoS2, MoSe2, WS2 and WSe2 nanosheets up to 70 μm in lateral size. Further, our temperature dependent Raman spectroscopy investigation shows that softening of Raman modes as temperature increases from 80 K to 593 K is due to the negative temperature coefficient and...
متن کاملExcitation Energy Dependent Raman Signatures of ABA- and ABC-stacked Few-layer Graphene
The dependence of the Raman spectrum on the excitation energy has been investigated for ABA-and ABC- stacked few-layer graphene in order to establish the fingerprint of the stacking order and the number of layers, which affect the transport and optical properties of few-layer graphene. Five different excitation sources with energies of 1.96, 2.33, 2.41, 2.54 and 2.81 eV were used. The position ...
متن کاملCVD synthesis of large-area, highly crystalline MoSe2 atomic layers on diverse substrates and application to photodetectors.
Synthesis of large-area, atomically thin transition metal dichalcogenides (TMDs) on diverse substrates is of central importance for the large-scale fabrication of flexible devices and heterojunction-based devices. In this work, we successfully synthesized a large area of highly-crystalline MoSe2 atomic layers on SiO2/Si, mica and Si substrates using a simple chemical vapour deposition (CVD) met...
متن کاملOn the chemical bonding effects in the Raman response: Benzenethiol adsorbed on silver clusterswz
We study the effects of chemical bonding on Raman scattering from benzenethiol chemisorbed on silver clusters using time-dependent density functional theory (TDDFT). Raman scattering cross sections are computed using a formalism that employs analytical derivatives of frequency-dependent electronic polarizabilities, which treats both off-resonant and resonant enhancement within the same scheme. ...
متن کامل